December 22, 2016

RAID-6 Reed-Solomon Codes with Near-Optimal Arithmetic Complexities

  • Alloum A.
  • Sian-Jheng Lin
  • Tareq Y.Al-Naffouri

RAID-6 code is a class of [n=k + 2, k] systematic MDS codes to tolerate two failed drives. When RAID-6 is implemented by Reed-Solomon (RS), the penalty of the writing performance is on the field multiplications in the second parity. In this paper, we present a configuration of the factors of the secondparity formula, such that the arithmetic complexity can reach the optimal complexity bound when the code length approaches infinity. In the proposed approach, the intermediate data used for the first parity is also utilized to calculate the second parity. To the best of our knowledge, this is the first approach supporting the RAID-6 RS to approach the optimal arithmetic complexity.

View Original Article

Recent Publications

March 20, 2017

LWIP and Wi-Fi Boost Link Management

  • K S.
  • Kim B.
  • Ling J.
  • Lopez-Perez D.
  • Ming Ding
  • Vasudevan S.

3GPP LWIP Release 13 technology and its prestandard version Wi-Fi Boost have recently emerged as an efficient LTE and Wi-Fi integration at the IP layer, allowing uplink on LTE and downlink on Wi-Fi. This solves all the contention problems of Wi-Fi and allows an optimum usage of the unlicensed band ...

March 13, 2017

Advanced C+L-Band Transoceanic Transmission Systems Based on Probabilistically-Shaped PDM-64QAM

  • Brindel P.
  • Buchali F.
  • Carbo Meseguer A.
  • Charlet G.
  • Fernandez I.
  • Ghazisaeidi A.
  • Hu Q.
  • Renaudier J.
  • Rios-Muller R.
  • Schmalen L.
  • Tran P.

We review the most recent, advanced concepts and methods employed in the cutting-edge spectrally-efficient coherent fiber-optic transoceanic transmission systems, such as probabilistic shaping, adaptive digital nonlinear compensation, rate-adaptive spatially-coupled low density parity check codes, and dual-band C+L-band transmission. Building upon all these concepts and methods, we demonstrate transmission of 179 ...

March 13, 2017

Reduced Switching Connectivity for Large Scale Antenna Selection

  • Garcia Rodriguez A.
  • Masouros C.
  • Rulikowski P.

In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. ...