September 20, 2016

Structures and dynamics in the wakes of sliding bubbles

  • Donnelly B.
  • Nolan K.

Structures and dynamics in the wakes of sliding bubbles An experimental investigation is reported for the flow structures in the wake of an air bubble sliding under an inclined surface in quiescent water. Time-resolved Particle Image Velocimetry (PIV) is used to study the wakes of sliding bubbles for a range of measurement planes, bubble diameters and surface inclination angles. Additionally, key aspects of the bubble's motion are measured simultaneously using a novel method that accounts for the motion of the bubbles interface. Thus, vortex shedding may be linked to changes in the bubble shape and path. Analysis of the measured velocity and vorticity fields reveals a wake structure consisting of a near wake that moves in close proximity to the bubble, shedding vorticity at the inversion points of the bubble path. Downstream of the bubble in the far wake, these structures evolve into asymmetrical, oppositely-oriented hairpin vortices that are generated in the near wake. These hairpin vortices bear similarities to those observed behind freely rising bubbles and near-wall bluff bodies and are found to cause significant motion of the bulk fluid. This bulk fluid motion has the potential to offer significant convective cooling of adjacent heated surfaces, such as submerged electronics components.

View Original Article

Recent Publications

March 20, 2017

LWIP and Wi-Fi Boost Link Management

  • K S.
  • Kim B.
  • Ling J.
  • Lopez-Perez D.
  • Ming Ding
  • Vasudevan S.

3GPP LWIP Release 13 technology and its prestandard version Wi-Fi Boost have recently emerged as an efficient LTE and Wi-Fi integration at the IP layer, allowing uplink on LTE and downlink on Wi-Fi. This solves all the contention problems of Wi-Fi and allows an optimum usage of the unlicensed band ...

March 13, 2017

Advanced C+L-Band Transoceanic Transmission Systems Based on Probabilistically-Shaped PDM-64QAM

  • Brindel P.
  • Buchali F.
  • Carbo Meseguer A.
  • Charlet G.
  • Fernandez I.
  • Ghazisaeidi A.
  • Hu Q.
  • Renaudier J.
  • Rios-Muller R.
  • Schmalen L.
  • Tran P.

We review the most recent, advanced concepts and methods employed in the cutting-edge spectrally-efficient coherent fiber-optic transoceanic transmission systems, such as probabilistic shaping, adaptive digital nonlinear compensation, rate-adaptive spatially-coupled low density parity check codes, and dual-band C+L-band transmission. Building upon all these concepts and methods, we demonstrate transmission of 179 ...

March 13, 2017

Reduced Switching Connectivity for Large Scale Antenna Selection

  • Garcia Rodriguez A.
  • Masouros C.
  • Rulikowski P.

In this paper, we explore reduced-connectivity radio frequency (RF) switching networks for reducing the analog hardware complexity and switching power losses in antenna selection (AS) systems. In particular, we analyze different hardware architectures for implementing the RF switching matrices required in AS designs with a reduced number of RF chains. ...