October 20, 2016

The hydrodynamic and heat transfer behaviour downstream of a channel obstruction in the laminar flow regime

  • Jeffers N.
  • Punch J.
  • Stafford J.
  • Waddell A.

Microfluidic systems have been proposed as potential solutions for the cooling of next-generation Integrated Circuits (ICs) and Photonics Integrated Circuits (PICs). For PICs, integration of microfluidics may enable greater laser-bar array densities and, consequently, greater transmission bandwidth. To cool the micrometer scale hot-spots produced by the laser-bars, a passively actuated structure situated in a micro--channel could regulate temperature by disturbing flow in a target location as required. To this end, a proof-of-concept passive structure was developed from a Shape Memory Alloy (SMA), and demonstrated at the millimeter scale in previous work. The objective of this study is to measure the heat transfer augmentation at a target surface downstream of the obstruction. Two experiments were performed to measure the flow field and heat transfer downstream of the test pieces in a square miniature channel for a range of Reynolds numbers (Re = 48 - 176) and opening area ratios (Beta = 0.2 - 0.5): using Particle-Image Velocimetry (PIV) and infrared (IR) thermography of a Joule-heated foil respectively. A 50% improvement was observed in the foil area averaged heat transfer coefficient (relative to the unobstructed channel) for Re = 176 and Beta = 0.19. A correlation was developed to interpolate Nusselt number (Nu) from a given Re and Beta for the studied geometry, and analysis of the correlated exponents showed an improvement in heat transfer relative to a simple pillar obstruction. This was attributed to the wake that formed downstream of the test pieces. The findings of this work are relevant to the modeling and design of practical microfluidic systems for targeted hot-spot cooling in future integrated circuit packaging.

View Original Article

Recent Publications

April 12, 2017

Multidimensional Mutual Information Characterization of Nonlinear Interactions over Time and Polarizations

  • Eriksson T.
  • Fehenberger T.
  • Idler W.

The achievable information rate is experimentally estimated in coherent fiber optical communication for different four dimensional descriptions of the channel to the demapper. Polarization-multiplexed 16-ary quadrature amplitude modulation with channel symbolrates of either 10 or 20 Gbaud are investigated in experiments over both erbium doped fiber amplifier based links and ...

April 12, 2017

Uplink Performance Analysis of Dense Cellular Networks With LoS and NLoS Transmissions

  • Albert Y. Zomaya
  • Guoqiang Mao
  • Lopez-Perez D.
  • Ming Ding
  • Tian Ding
  • Zihuai Lin

In this paper, we analyse the coverage probability and the area spectral efficiency (ASE) for the uplink (UL) of dense small cell networks (SCNs) considering a practical path loss model incorporating both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. Compared with the existing work, we adopt the following novel approaches in ...

April 12, 2017

From Scaling Disparities to Integrated Parallelism: A Decathlon for a Decade

  • Neilson D.
  • Winzer P.

Based on a variety of long-term network traffic data across different geographies and applications as well as long-term scaling trends of key information and communication technologies, we identify fundamental scaling disparities between technologies used to generate and process data and technologies used to transport data. These disparities could lead to ...