July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter than the state-of-the-art differential privacy (ed p); (ii) Utility: an interface for data analysts to systematically explore the trade-offs between the output accuracy (with error-estimation) and query execution budget; (iii) Latency: near real-time stream processing based on a scalable “synchronization-free” distributed architecture.

Recent Publications

May 22, 2017

Multidimensional Resource Allocation in NFV Cloud

  • Goldstein M.
  • Raz D.
  • Segall I.

Network Function Virtualization (NFV) is a new networking paradigm in which network functionality is implemented on top of virtual infrastructure deployed over COTS servers. One of the main motivations for the shift of telco operators into this paradigm is cost reduction, thus the efficient use of resources is an important ...

May 20, 2017

The Actual Cost of Software Switching for NFV Chaining

  • Caggiani Luizelli M.
  • Raz D.
  • Saar Y.
  • Yallouz J.

Network Function Virtualization (NFV) is a novel paradigm allowing flexible and scalable implementation of network services on cloud infrastructure. An important enabler for the NFV paradigm is software switching, which needs to satisfy rigid network requirements such as high throughput and low latency. Despite recent research activities in the field ...

May 08, 2017

Coexistence-aware dynamic channel allocation for 3.5 GHz shared spectrum systems

The paradigm of shared spectrum allows secondary devices to opportunistically access spectrum bands underutilized by primary owners. As the first step, the FCC targeted sharing the 3.5 GHz (3550–3700 MHz) federal spectrum with commercial systems. The proposed rules require a Spectrum Access System to implement a three-tiered spectrum management framework, ...