June 01, 2018

FPGA-Centric Design Process for Avionic Simulation and Test

Real-time computing systems are increasingly used in aerospace and avionic industries. In the face of power challenge, performance requirements and demands for higher flexibility, hardware designers are directed toward reconfigurable computing using field programmable gate arrays (FPGAs) that offer high computation rates per watt and adaptability to the application constraints. However, considering reconfigurable computing in the avionic design process leads to several challenges for system developers. Indeed, such technology should be validated along the verification & validation cycle starting with simulation tools, passing through the test benches and finishing with the integration phase. For each step, the FPGA can play an essential role to achieve better performances, more adaptive systems, and cost-effective solutions. In this paper, we present a seamless FPGA-centric design process for avionic equipments. Along this process, we redefine the role of the FPGA circuits to cover the simulation, the test, and the integration steps. First, reconfigurable logics are used in the frame of heterogeneous CPU/FPGA computing in order to obtain high speed-up for real-time avionic simulation. The proposed environment supports dynamic execution model enabling reconfiguration during runtime to avoid the timing constraint violation. Second, the FPGA is used as a key solution to offer versatile test benches and to converge toward unified test and simulation tools. We have designed several commercial input output intellectual property systems with dynamic runtime reconfiguration capabilities, in order to mitigate component obsolescence and to provide increased flexibility and decreased design time. Third, at the integration phase, we use the conventional tools to make profit from reconfigurable technology in embedded avionic applications in order to deliver high computation rates and to adapt their functioning mode to provide reliability, fault tolerance, deterministic timing g- arantees, and energy efficiency.

View Original Article

Recent Publications

August 09, 2017

A Cloud Native Approach to 5G Network Slicing

  • Francini A.
  • Miller R.
  • Sharma S.

5G networks will have to support a set of very diverse and often extreme requirements. Network slicing offers an effective way to unlock the full potential of 5G networks and meet those requirements on a shared network infrastructure. This paper presents a cloud native approach to network slicing. The cloud ...

August 01, 2017

Modeling and simulation of RSOA with a dual-electrode configuration

  • De Valicourt G.
  • Liu Z.
  • Violas M.
  • Wang H.
  • Wu Q.

Based on the physical model of a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in radio over fiber (RoF) links, the distributions of carrier density, signal photon density, and amplified spontaneous emission photon density are demonstrated. One of limits in the use of RSOA is the lower ...

July 12, 2017

PrivApprox: Privacy-Preserving Stream Analytics

  • Chen R.
  • Christof Fetzer
  • Le D.
  • Martin Beck
  • Pramod Bhatotia
  • Thorsten Strufe

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy (ezk) guarantees for users, a privacy bound tighter ...