January 01, 2018

140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity

  • Bigo S.
  • Dupuy J.
  • Duval B.
  • Estaran Tolosa J.
  • Jorge F.
  • Konczykowska A.
  • Mardoyan H.
  • Nodjiadjim V.
  • Riet M.

We report on an on-off keying intensity-modulation and direct-detection C-band optical transceiver capable of addressing all datacenter interconnect environments at well-beyond 100Gbaud. For this, the transmitter makes use of two key InP technologies: a 2:1 double heterojunction bipolar transistor selector multiplexer and a monolithically integrated distributed-feedback laser traveling-wave electro-absorption modulator, both exceeding 100-GHz of 3-dB analog bandwidth. A pre-amplified 110-GHz PIN photodiode prior to a 100-GHz analog-to-digital converter complete the ultra-high bandwidth transceiver module, the device under study. In the experimental work, which discriminates between intra- and inter-data center scenarios (dispersion unmanaged 120, 560, 960m, and dispersion-managed 10 and 80km of standard singlemode fiber), we evaluate the bit-error rate evolution against the received optical power at 140, 180, and 204Gbaud on-off keying for different equalization configurations (adaptive linear filter with and without the help of short-memory sequence estimation) and forward error correction schemes (hard-decision codes with 7% and 20% overhead); drawing conclusions from the observed system-level limitations of the respective environments at this ultra-high baudrate, as well as from the power budget margins and sensitivity metrics. From the demonstration, we highlight three results: successful operation with more than 6-dB operation margin below the 7% error-correction at 140Gbaud over the entire 100m-80km range with only linear feed-forward equalization. Then the transmission of a 180Gbaud on-off-keying carrier over 80km considering 20% error-correction overhead. And finally, 10-km communication at 204Gbaud on-off keying with up to 6dB operation margin, and regular 7%-overhead error-correction.

View Original Article

Recent Publications

January 01, 2018

Fair Dynamic Spectrum Management for QRD-Based Precoding with User Encoding Ordering in Downstream G.fast Transmission

In next generation DSL networks such as G.fast, employing discrete multi-tone transmission in high frequencies up to 212 MHz, the crosstalk among lines reaches very high levels. To precompensate the crosstalk in downstream transmission, QRD-based precoding has been proposed as a near-optimal dynamic spectrum management (DSM) technique. However, the performance ...

January 01, 2018

Practical Mitigation of Passive Intermodulation in Microstrip Circuits

This paper presents new experimental evidence and a novel practical approach for mitigation of passive intermodulation (PIM) in microstrip circuits fabricated on commercial printed circuit board laminates. The mechanisms of distributed PIM in microstrip circuits are reviewed and a phenomenology of PIM generation due to locally enhanced electromagnetic fields at ...

January 01, 2018

Efficient Cooperative HARQ for Multi-Source Multi-Relay Wireless Networks

In this paper, we compare the performance of three different cooperative Hybrid Automatic Repeat reQuest (HARQ) protocols for slow-fading half-duplex orthogonal multiple access multiple relay channel. Channel State Information (CSI) is available at the receiving side of each link only. Time Division Multiplexing is assumed, where each orthogonal transmission occurs ...